Reconstructing Phylogenetic Trees

September 18th, 2008

Systematic Methods Through Time

Carolus Linneaus

Charles Darwin

Systematic Methods Through Time

Carolus Linneaus

Charles Darwin

Computing Revolution

- Late 1950s & 60s.
- Growing availability of core computing facilities.

A QUANTITATIVE APPROACH TO A PROBLEM IN CLASSIFICATION ¹

CHARLES D. MICHENER AND ROBERT R. SOKAL² Department of Entomology, University of Kansas, Lawrence

Received October 10, 1956

Charles D. Michener

Robert R. Sokal

A QUANTITATIVE APPROACH TO A PROBLEM IN CLASSIFICATION ¹

CHARLES D. MICHENER AND ROBERT R. SOKAL² Department of Entomology, University of Kansas, Lawrence

Received October 10, 1956

Charles D. Michener

Tree Reconstruction I: Intro. & Distance Measures

- The challenge of tree reconstruction.
- Phenetics and an introduction to tree reconstruction methods.
 - Discrete v. distance measures.
 - Clustering v. optimality searches.
 - Tree building algorithms.

How Many Trees?

Taxa	Unrooted Trees	Rooted Trees
4	3	15
8	10,395	135,135
10	2,027,025	34,459,425
22	3x10^23	
50	3x10^74*	

* More trees than there are atoms in the universe.

Reconstructing Trees

- The challenge of tree reconstruction.
 - Lots of possibilities.
- Phenetics and an introduction to tree reconstruction methods.
 - Discrete v. distance measures.
 - Clustering v. optimality searches.
 - Tree building algorithms.

Discrete Data

discrete

sites

	1	2	3	4	5	6	7
1	Т	Т	A	Т	Т	A	A
2	A	А	Т	Т	Т	Α	Α
3	Α	А	А	Α	A	Т	А
4	A	Α	Α	Α	Α	Α	Т

sequences

Discrete Data

Discrete v. Distance Trees

Clustering Methods

Optimality Criterion

NP-Completeness

- Non-deterministic polynomial.
- Impossible to guarantee optimal tree for even relatively modest number of sequences.
- Use of heuristic methods.

Available Methods

Distance Clustering Methods

- The phenetic approach.
- Two common algorithms for tree reconstruction.
 - UPGMA & Neighbor joining.

Phenetics

- Also called **numerical taxonomy** because of emphasis on data.
- Relationships inferred based on overall similarity.

Phenetics

- **UPGMA** Unweighted pair group method with arithmetic means (Sokal & Michener 1958).
- Remarkably simple and straightforward.
- Can be used with many types of distances (molecular, morphological, etc.).

	A	В	С	D	E
А	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
E	50	29	44	44	0

	A	В	С	D	E
А	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
E	50	29	44	44	0

	A	В	С	D	E
А	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
E	50	29	44	44	0

	A	В	С	D	E
А	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
E	50	29	44	44	0

A to
$$B/C = (A \text{ to } B + A \text{ to } C)/2$$

$$40 = (32 + 48)/2$$

	▼					
	A	B/C	D	E		
А	0	40	51	50		
B/C	40	0	38	36.5		
D	51	38	0	44		
E	50	36.5	44	0		

	А	В	С	D	E
А	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
E	50	29	44	44	0

A to
$$B/C = (A \text{ to } B + A \text{ to } C)/2$$

C)/2 40 = (32 + 48)/2

	▼					
	A	B/C	D	E		
А	0	40	51	50		
B/C	40	0	38	36.5		
D	51	38	0	44		
E	50	36.5	44	0		

UPGMA Algorithm 13 B 5.25 13 18.25 F. B/C Ε Α D 51 40 50 Α 0 B/C 38 36.5 40 0

36.5

38

0

44

44

0

51

50

D

Ε

	A	B/C	D	E
А	0	40	51	50
B/C	40	0	38	36.5
D	51	38	0	44
E	50	36.5	44	0

	А	B/C/E	D
А	0	45	51
B/C/E	45	0	37.25
D	51	37.25	0

	А	B/C/E	D
А	0	45	51
B/C/E	45	0	37.25
D	51	37.25	0

	A	B/C/E	D
А	0	45	51
B/C/E	45	0	37.25
D	51	37.25	0

	A	B/C/E/D
А	0	48
B/C/E/D	48	0

	A	B/C/E/D
А	0	48
B/C/E/D	48	0

Distance Methods

- Unweighted pair group means (Sokal & Michener 1958).
 - Easy to understand and implement even on large datasets.
 - Assumes molecular clock and prone to error if this is not the case.

	A	В	С	D	Ε
A	0	32	48	51	50
В	32	0	26	34	29
С	48	26	0	42	44
D	51	34	42	0	44
Е	50	29	44	44	0

	A	В	С	D	E
А	0	15	21	16	11
В	15	0	10	9	8
С	21	10	0	15	14
D	16	9	15	0	9
E	11	8	14	9	0

	А	В	С	D	E
А	0	15	21	16	11
В	15	0	10	9	8
С	21	10	0	15	14
D	16	9	15	0	9
E	11	8	14	9	0

	A	В	С	D	E
А	0	15	21	16	11
В	15	0	10	9	8
С	21	10	0	15	14
D	16	9	15	0	9
E	11	8	14	9	0

	A	B/E	С	D
А	0	13	21	16
B/E	13	0	12	9
С	21	10	0	15
D	16	9	15	0

Real Tree

UPGMA Tree

http://www.icp.be/~opperd/private/neighbor.html

Advantages of Distance Clustering Methods for Contemporary Systematics

- Computationally easy & quick.
- Typically give a single tree.
- Provide starting point for more sophisticated analyses.

Disadvantages of Distance Clustering Methods & Phenetics for Contemporary Systematics

- Problems with distance measures.
- Problems with clustering algorithms.
- Problems with character choice.

Problems with Phenetics

Problems with Phenetics

Types of Similarity

Homology v. Analogy

Similar due to inheritance Similar due to... uh...other factors

http://evolution.berkeley.edu/evolibrary/

Homology

• Features shared due to inheritance from a common ancestor

Vertebrate Forelimbs

http://www.mun.ca/biology/scarr/

Analogies

• Features shared due convergence or parallelism.

Swimming body form of vertebrates

http://evolution.berkeley.edu/evolibrary/

Mellorar T

War of the Systematists

- Intense battles in the 1960s and 1970s.
- Considered in detail by the philosopher David Hull.

SCIENCE as a PROCESS

DAVID L. HULL

The Cladistic Revolution

• **Cladistics:** Hierarchical classification of species based on evolutionary ancestry.

The Cladistic Revolution

- Willi Hennig the founder of cladistics.
 - <u>Phylogenetic Systematics</u>
 - 1950 (German edition).
 - 1966 (English translation).

Willi Hennig

The Cladogram

• **Cladogram:** A branching diagram that depicts a set of hypothesized evolutionary relationships (i.e., a phylogeny).

Clades & Cladists

• **Clade:** A monophyletic group.

©1999 Addison Wesley Longman, Inc.

Clades & Cladists

• **Cladist:** One who uses cladistics to infer phylogenetic relationships.

Arnold Kluge

Joel Cracraft

Steve Poe

Kevin De Queiroz

Norman Platnick

Cladistic Principles

- I. Use characters with special evolutionary significance.
- II. Reconstruction of phylogeny based on most parsimonious reconstruction of these characters.

53

Cladistic Terms for Characters

- Instead of being 'primitive' or 'advanced', characters are 'plesiomorphic' and 'apomorphic.'
- **Apomophy:** A derived character.
- **Plesiomorphy:** An ancestral or primitive character.

Cladistic Terms for Characters

• **Synapomorphy:** An apomorphy shared among taxa due to common ancestry.

Cladistic Terms for Characters

- **Synapomorphy:** An apomorphy shared among taxa due to common ancestry.
- **Symplesiomorphy:** A plesiomorphy shared among taxa, but which predates their common ancestor.

Classification with Symplesiomorphy

Cladistic Terms

Correct: grouped by synapomorphy

Incorrect: grouped by symplesiomorphy

Cladistic Terms

• Autapomorphy: A derived trait that is unique to one group.

Hierarchy of ⁶⁰ Cladistic Characters

clade c: vascular plants

http://www.ucmp.berkeley.edu/IB181/VPL/Phylo/Phylo2.html

Identifying Synapomorphies

- Similar fundamental structure.
- Same relation to surrounding characters.
- Similar development.
- Product of natural selection?

Methods

Methods

Parsimony

- Preference for the tree with the "minimum net amount of evolution" (Edwards and Cavalli-Sforza 1963)
- Seen as an extension of Occam's razor.
 - entia non sunt multiplicanda praeter necessitatem
 - "entities should not be multiplied beyond necessity" or "all things being equal, the simplest solution tends to be the best one."

Parsimony Reconstruction

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Eps	0	0	1	1	1	0

Parsimony Reconstruction

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Eps	0	0	1	1	1	0

Parsimony Reconstruction

	1	2	3	4	5	6
Alpha	1	0	0	1	1	0
Beta	0	0	1	0	0	0
Gamma	1	1	0	0	0	0
Delta	1	1	0	1	1	1
Eps	0	0	1	1	1	0

Hillis et al. 1994

Cladistics Today

- The Willi Hennig Society.
- The journal Cladistics.
- Cladisitcs and Cladists with a capital 'C.'

