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Systematic Methods
Through Time
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Computing Revolution’

Late 1950s & 60s.

Growing availability of
core computing
facilities.
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Tree Reconstruction I;
Intro. & Distance Measures

e The challenge of tree reconstruction.

® Phenetics and an introduction to tree
reconstruction methods.

e Discrete v. distance measures.
e Clustering v. optimality searches.

e Tree building algorithms.
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How Many Trees?

Taxa

Unrooted
Trees

Rooted Trees

4

3

15

8

10,395

135,135

10

2,027,025

34,459,425

22

3x10723

50

3x10774*

* More trees than there are atoms in the universe.
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Reconstructing
Trees

e The challenge of tree reconstruction.
e Lots of possibilities.

® Phenetics and an introduction to tree
reconstruction methods.

® Discrete v. distance measures.

e Clustering v. optimality searches.

e Tree building algorithms.

L, UNIVERSITY* ROCHESTER



Discrete Data

discrete
sites
1 23 45 6 7
TTATTAA
AATTTAA
AAAAATA
AAAAAAT

sequences
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Discrete Data

sequences
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Discrete v.
Distance Trees

Parsimony

&2, UNIVERSITY~ ROCHESTER



Clustering Methods

Decide where Add next
to place next sequence to
Start tree
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Optimality Criterion
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NP-Completeness

¢ Non-deterministic polynomial.

e Impossible to guarantee optimal tree
for even relatively modest number of
sequences.

e Use of heuristic methods.
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Available Methods

Type of data

Nucleotide

Distances sites

UPGMA

Clustering
algorithm

Neighbour
joining

Maximum

Minimum parsimony

evolution
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Distance Clustering
Methods

e The phenetic approach.

e Two common algorithms for tree
reconstruction.

e UPGMA & Neighbor joining.
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Phenetics

e Also called numerical taxonomy because of
emphasis on data.

e Relationships inferred based on overall similarity.
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Phenetics
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UPGMA

e UPGMA - Unweighted pair group
method with arithmetic means (Sokal &
Michener 1958).

e Remarkably simple and
straightforward.

e Can be used with many types of
distances (molecular, morphological,
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UPGMA Algorithm
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UPGMA Algorithm
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UPGMA Algorithm

0 32 48 51 50
32 0 26 34 29
48 26 0 42 44
51 34 42 0 44
50 29 44 44 0
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UPGMA Algorithm
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UPGMA Algorithm
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UPGMA Algorithm
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UPGMA Algorithm

B/C |D E
40 51 50
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UPGMA Algorithm

B




UPGMA Algorithm
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UPGMA Algorithm
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Distance Methods

 Unwelghted pair group means (Sokal & Michener
1958).

— Easy to understand and implement even on
large datasets.

— Assumes molecular clock and prone to error if
this is not the case.
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UPGMA Problems
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UPGMA Problems
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UPGMA Problems

: B
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UPGMA Problems
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UPGMA Problems

17.75

A
Real Tree UPGMA Tree
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Neighbor-Joining

Saitou & Nei 1987

&

http://www.icp.be/~opperd/private/neighbor.html
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Advantages of Distance Clustering
Methods for Contemporary
Systematics

e Computationally easy & quick.
e Typically give a single tree.

e Provide starting point for more
sophisticated analyses.
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Disadvantages of Distance
Clustering Methods & Phenetics
for Contemporary Systematics

e Problems with distance measures.
e Problems with clustering algorithms.

e Problems with character choice.
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Problems with
Phenetics
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Problems with
Phenetics




Types of Similarity

Homology vVv. Analogy

Similar due to Similar due to...
inheritance wh...other factors

http://evolution.berkeley.edu/evolibrary/
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Homology

e Features shared due to inheritance from
a common ancestor

Vertebrate Forelimbs

http://www.mun.ca/biology/scarr/
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Analogies

 Features shared due convergence or
parallelism.

et R N

SHARKS ARTIODACTYLS DOLPHINS

CENOZOIC FIRST DOLPHINS
dorsal fin

FIRST
DOLPHIN CETACEANS

FIRST MAMMALS

FIRST LAND
YERTEBRATES

pectoral fin torpedo-shaped hody

FIRST SHARKS FIRST BONY FISH

Swimming body form of vertebrates

http://evolution.berkeley.edu/evolibrary/
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Timeline

Phenetics/

Numerical Taxonomy Cladistics

Phylogeny by Expert Opinion & Gestalt \ I

Carolus Linneaus Charles Darwin Robert R. Willi Hennig
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Timeline

Systematists at War

Phylogeny by Expert Opinion & Gestalt

Carolus Linneaus Charles Darwin Robert R. Willi Hennig
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War of the
Systematists

SCIENCE

asa

" PROCESS

e Intense battles in the 1960s
and 1970s.

e Considered in detail by the ‘Q\\

philosopher David Hull.
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The Cladistic Revolution

® Cladistics: Hierarchical classification of
species based on evolutionary ancestry.
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The Cladistic Revolution
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e Willi Hennig - the founder of
cladistics.

e Phylogenetic Systematics

e 1950 (German edition).

e 1966 (English translation).

Willi Hennig
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The Cladogram

e Cladogram: A branching diagram that depicts a set of
hypothesized evolutionary relationships (i.e., a phylogeny).

Ray-finned Rodents Dinosaurs
Sharks fish Amphibians  Primates  &rabbits  Crocodiles & hirds

Pre-orbital
fenestra

Amniotic egy
Four limbs

Bony skeleton

Vertebrae
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Clades & Cladists

e Clade: A monophyletic group.

TAXON 1 TAXON 2 TAXON 3
(monophyletic) (polyphyletic) (paraphyletic)

D E

G H J K D E G H J K D E G H J K

A

C \B/i/ |
(a) ’
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Clades & Cladists

e Cladist: One who uses cladistics to
infer phylogenetic relationships.
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53

Cladistic Principles

I. Use characters with £ -
] - P )’ & ﬂ [‘K 6—.&'
special evolutionary 7 7 e oo

significance.

Sharks fish Amphibians  Primates  &rabbits  Crocodiles & birds

Pre-orbital
fenestra

. Reconstruction of
phylogeny based on
most parsimonious
reconstruction of these
characters.

Vertebrae
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Cladistic Terms
for Characters

Apomorphy  Plesiomorphy

=g .
o~ .
» .

Instead of being ‘primitive’ or ‘advanced’, characters
are ‘plesiomorphic’ and ‘apomorphic.’

Apomophy: A derived character.

Plesiomorphy: An ancestral or primitive character.
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Cladistic Terms
for Characters

Chloroplast gene ml2 (with intron) and flanking genes

Synapomorphy > < FoRPmers

Chloroplast gene ml2 (without intron) and flanking genes

L

Agarose Gel Electrophoresis separates PCR fragments based onsize

Caryophyllales

Loss of the mpl2
intron serves as a
synapomorphy for
Caryophyllales

¢ Synapomorphy: An apomorphy shared among taxa
due to common ancestry.
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Cladistic Terms
for Characters

outgroup kangaroo bat

Synapomorphy

http://www.mun.ca/biology/scarr/Hair symplesiomorphy.htm

Synapomoxrphy: An apomorphy shared among taxa
due to common ancestry.

Symplesiomorphy: A plesiomorphy shared among
taxa, but which predates their common ancestor.

TW UNIVERSITY*ROCHESTER



http://www.mun.ca/biology/scarr/Hair_symplesiomorphy.htm
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Classification with
- Symplesiomorphy

CHONDRICHTHYES

SHARKS AND RAYS

COELACANTHS

LUNGFISH

SARCOPTERYGIANS

> TETRAPODS

BICHIRS

OSTEICHTHYES

PADDLEFISH

STURGEON

ACTINOPTERYGIANS

GARS

BOWFINS

TELEOSTS




Cladistic Terms

Correct: grouped by synapomorphy

six antennal segments five antennal segments

1 4 R S v S SR SR S 1 QO S

F common ancestor has
five antennal segments

Incorrect: grouped by symplesiomorphy

five antennal
segments six antennal segments

BEBABHE HEASBEEAR XA ABEAEE T B

Fx Sommon ancestor has
five antennal segments
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Cladistic Terms

outgroup turtle lizard bird cat

Autapomorphy hair

e Autapomorphy: A derived trait that is
unique to one group.

[86] UNIVERSITY~ ROCHESTER
N:Y,



Hierarchy of

Cladistic Characters

taxa:

clade ¢: vascular plants

clade b: land plants

Coleachaere

character

stales:

unicellular
sporophyte

multicellular
sporophyle

http://www.ucmp.berkeley.edu/IB181/VPL/Phylo/Phylo2.htm

liverwort

node

conifer

/

O primitive

UNIVERSITYs ROCHESTER
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transformation /
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http://www.ucmp.berkeley.edu/IB181/VPL/Phylo/Phylo2.html
http://www.ucmp.berkeley.edu/IB181/VPL/Phylo/Phylo2.html

Identifying
Synapomorphies

Similar fundamental structure.

Same relation to surrounding
characters.

Similar development.

Product of natural selection?
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Methods

Type of data

Nucleotide

Distances sites

UPGMA

Neighbour
joining

Clustering
algorithm

Maximum

Minimum parsimony

evolution
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Maximum
likelihood

Optimality
criterion

L, UNIVERSITY* ROCHESTER




Methods

Type of data

Nucleotide

Distances sites

UPGMA

Neighbour
joining

Clustering
algorithm

Maximum

Minimum parsimony

evolution
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Optimality
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likelihood
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Parsimony

Preference for the tree with the
“minimum net amount of
evolution” (Edwards and Cavalli-Sforza

1963)

Seen as an extension of Occam’s razor.
— entia non sunt multiplicanda praeter
necessitatem
— ““entities should not be multiplied beyond
necessity’”’ or "all things being equal, the
simplest solution tends to be the best one."

&2, UNIVERSITY~ ROCHESTER



Parsimony

Reconstruction
2 4 | 5

Alpha
Beta

1|1
00
00
1|1
1|1

0
0
Gamma 1
1
0

Eps
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Parsimony
Reconstruction
1 0 0

1 1

Alpha  Delta Gamma Beta Epsilon

or 0
1 1 1 0 0

Alpha  Delta  Gamma Beta Epsilon
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Parsimony
Reconstruction

0 1 1 0 0

Alpha Delta Gamma Beta Epsilon

—.—..
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Parsimony v.
Distance

OQ.

0

= O 0.75,4 b o\

Branch lengths
(a, b, and c)

Branch lengths
(d and e)

Parsimony Weighted parsimony

Success rate ’
__]0-20% ‘
] 20-40%

40-60% _ Neighbor joining Neighbor joining
60-80% (uncorrected) (Kimura)
= (V]

80-95% : ‘
] 95-100% ‘ - w
Parsimony

UPGMA (uncorrected) UPGMA (Kimura)
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Cladistics Today

e The Willi Hennig Society.
e The journal Cladistics.

e (Cladisitcs and Cladists with a
capital ‘C’
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