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Parsimony
I. Counting evolutionary changes.

II. Searching for the most parsimonious 
tree.

• Exploring tree space.

• Sequence of taxon addition.

III.Performance of parsimony.

IV.Problems with parismony.
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I. Counting the 
Number of Changes

• The Fitch/Wagner method.

• The Dollo method.
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Fitch/Wagner Method
4

{AC} {AG}
{ACG}

{AC}

• Postorder tree transversal.

• At internal node, create intersection of 
descendent sets.

• If empty, create union of descendent 
sets.



Fitch/Wagner Method
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{AC} {AG}
{ACG}

{AC}

Total Number of Changes = 3



I. Counting the 
Number of Changes

• The Fitch/Wagner method.

• General model for reversible 
change.

• The Dollo method.

• Model for characters that are 
considered more likely to evolve in 
one direction.

6



Eyeless
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Dollo Method
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Total Number of Changes = 2



Dollo Method
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Total Number of Changes = 2

{01}
{0}

{01}
{0}



Dollo Method
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Total Number of Changes = 3

{1}
{1}

{1}
{0}



Dollo Method
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Total Number of Changes = 8



Dollo Method
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Total Number of Changes = 2



I. Counting the 
Number of Changes
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• The Fitch/Wagner method.

• General model for reversible change.

• The Dollo method.

• Model for characters that are 
considered more likely to evolve in 
one direction.



Optimality Criterion



How Many Trees?
Taxa Unrooted 

Trees
Rooted Trees

4 3 15

8 10,395 135,135

10 2,027,025 34,459,425

22 3x10^23

50 3x10^74*

* More trees than there are atoms in the universe.



II. Searching For the 
Optimal Topology
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1.Exhaustive
• Examines all possible trees.
• Only works for small number of taxa (<12).

2.Branch & Bound
• Ignores trees that are sure to be worse.
• Again, only works for small numbers (<18).

3.Heuristic
• Uses algorithms to explore tree space.
• Only method that works for large datasets.



1. Exhaustive Search
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1. Exhaustive Search
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1. Exhaustive Search
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2. Branch & Bound
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2. Branch & Bound
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2. Branch & Bound
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2. Branch & Bound
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2. Branch & Bound



3. Heuristic Search
The greedy search algorithm
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3. Heuristic Search
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1.Rearranging the topology
• Nearest neighbor interchange (NNI).

• Subtree pruning and regrafting (SPR).

• Tree bisection and reconnection (TBR).

2.Sequence of taxon addition
• Multiple sequence addition replicates 

required to avoid non-optimal peaks.



3. Heuristic Search
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• Nearest Neighbor 
Interchange (NNI)

• Dissolve an internal 
branch and reform 
in the two other 
possible ways.



3. Heuristic Search
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• Nearest Neighbor 
Interchange (NNI)

• Dissolve an internal 
branch and reform 
in the two other 
possible ways.



3. Heuristic Search
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• Subtree Pruning and 
Regrafting (SPR)

• Remove some chunk 
of the tree and try 
placing it in every 
possible position on 
the remainder of the 
original tree.



3. Heuristic Search
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• Tree Bisection and 
Reconnection (TBR).

• More elaborate form 
of SPR in which the two 
possible subtrees are 
merged in every 
possible way.



3. Heuristic Search
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3. Heuristic Search
32

• Taxon addition sequence.

• Manner in which taxa are 
added to the analysis can 
influence the results of a 
heuristic analysis.



3. Heuristic Search
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• Taxon addition sequence.

• Manner in which taxa are 
added to the analysis can 
influence the results of a 
heuristic analysis.

• Always run multiple 
sequence addition 
replicates.



III. Performance of 
Parsimony

34



III. Performance of 
Parsimony

35

Distance methods

Uncorrected Parsimony

Maximum Likelihood
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• Substitutional saturation.
• Long-branch attraction & the dreaded 

“Felsenstein Zone”

IV. Problems with 
Parsimony



In the Felsenstein Zone
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In the Felsenstein Zone
38
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Uncorrected Parsimony
Uncorrected Distances

Corrected methods 
(Maximum likelihood & 
distance clustering)

IV. Problems with 
Parsimony



Models of DNA 
Evolution

• DNA distances.

• Using models of evolution to ‘correct’ 
DNA distance estimates.

40



Uncorrected ‘p’

p = proportion of nucleotides that differ 
between two sequences.

nd = number of differences.

n = total sequence length.
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€ 

p = nd /n



Saturation Curve
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Types of Changes
43



Correction of 
Distances
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Models of DNA Evolution

1. Different types of substitutions 
(transitions, transversions, etc.).

2. Different nucleotide frequencies.

3. Rate variation among sites.

4. Proportion of sites lacking polymorphism.



Models of DNA Evolution
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Models of DNA Evolution
47

Jukes-Cantor



Jukes-Cantor
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1. All types of substitutions equally likely.

2. All nucleotides present at the same frequency.

3. No rate variation among sites.

4. All sites potentially variable.



Transition Bias
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Transition Bias
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Models of DNA Evolution
51

Kimura Two 
Parameter



Kimura Two 
Parameter
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1. Transitions & transversions assigned different rates.

2. All nucleotides present at the same frequency.

3. No rate variation among sites.

4. All sites potentially variable.

A C  G  Tα
β
α



GTR or REV
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General Time 
Reversible



GTR or REV
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1. Each type of reversible substitution with its own rate.

2. Nucleotides frequencies vary.

3. No rate variation among sites.

4. All sites potentially variable.

1

2
3

4 5
6



Rate Parameters for ML
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Rate Variation 
Among Sites

• Gamma

• Shape parameter as the inverse 
of the squared coefficient of 
variation.

• Small coefficient of variation 
results in rates normally 
distributed around 1.

• Large coefficient results in many 
sites with a rate close to 0 and a 
few with very fast rates.
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Rate Variation 
Among Sites
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Selecting a Model
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• Use of Likelihood ratio test to identify most appropriate 
model.
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Selecting a Model



Importance of Model Selection
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Synonymous v. Nonsynonymous
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Corrected v. Uncorrected 
Distances
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   Corrected Versus Uncorrected 
Genetic Distances
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Corrected v. Uncorrected 
Distances
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Corrected Versus Uncorrected 
Genetic Distances
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Saturation
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Non-synonymous
Substitutions

tRNA Changes

Silent Substitutions



Why Use Models?
65

Distance methods

Uncorrected Parsimony

Maximum Likelihood
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Uncorrected Parsimony
Uncorrected Distances

Corrected methods 
(Maximum likelihood & 
distance clustering)

Why Use Models?



Maximum 
Likelihood

• Invented by R. A. Fisher.

• Good properties:

• Consistency (converges 
on correct parameters).

• Efficiency (smallest 
possible variance around 
true parameter value).
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R. A. Fisher



Maximum 
Likelihood

• Typical thinking

• Prob(Hypothesis|Data)

• Prob(Tree|Data,Model)

• Maximum Likelihood thinking

• Prob(Data|Hypothesis)

• Prob(observed sequences|tree, model of evolution) = 
Likelihood(tree, model of evolution)
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Likelihood 
Estimation

• What is the probability of obtaining a 
heads (p) with the toss of an unknown coin?

• Data:

69
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Likelihood 
Estimation

• What is the probability of obtaining a 
heads (p) with the toss of an unknown coin?

• Data:

• L = Prob(D|p) = pp(1-p)(1-p)p(1-p)pp(1-p)
(1-p)(1-p) = p5(1-p)6
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Calculating Maximum 
Likelihood Values
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L = p5(1-p)6

If p = 0.2, L = 8.4E-5 

If p = 0.8, L = 2.1E-5

If p = 0.5, L = 4.9E-4

Maximum Likelihood 
Value = 0.454545

5/11 = 0.454545



Calculating Maximum 
Likelihood Values
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HHHTHHHHHHT

L = p9(1-p)2

If p = 0.2, L = 3.3E-7 

If p = 0.8, L = 0.005

If p = 0.5, L = 4.9E-4
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Maximum Likelihood 
Value = 0.81818

9/11 = 0.818181



Calculating a 
Trees ML Score
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D. Swofford

L = Prob(D|T) =       Prob(D(j)|T) 

€ 

j=1

m

∏

• Likelihood of tree equals product of likelihoods or that 
tree at each individual position.



Calculating a 
Trees ML Score
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D. Swofford

L = Prob(D|T) =       Prob(D(j)|T) 

€ 

j=1

m

∏

• Likelihood of tree equals product of likelihoods or that 
tree at each individual position.



Calculating a 
Trees ML Score
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D. Swofford

Likelihood = Prob(C,C,A,G,X,Y|T) = 
Prob(Y)      Prob(X|Y,b1)     Prob(C|X,b2)    Prob(C|X,b3)
Prob(A|Y,b4)     Prob(G|Y,b5)

X

Y
b1

b2 b3

b4

b5



Calculating a 
Trees ML Score
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D. Swofford

Prob(C,C,A,G,G,C|T) = 
Prob(C)      Prob(G|C,b1)     Prob(C|G,b2)    Prob(C|G,b3)
Prob(A|C,b4)     Prob(G|C,b5)

b1

b2 b3

b4

b5G

C



Calculating a 
Trees ML Score
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D. Swofford

Probabilities under Kimura 2 Parameter Model
1. Prob(transition|b) = 
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Prob(C,C,A,G,G,C|T) = 
Prob(C)      Prob(G|C,b1)     Prob(C|G,b2)    Prob(C|G,b3)
Prob(A|C,b4)     Prob(G|C,b5)



Calculating a 
Trees ML Score
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D. Swofford

Prob(C,C,A,G,G,C|T) = 
Prob(C)      Prob(tranversion,b1)     Prob(tranversion,b2)    Prob(tranversion,b3)
Prob(tranversion,b4)     Prob(tranversion,b5)
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b5G
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b1

b2 b3

b4

b5G

C

Calculating a 
Trees ML Score

Prob(C,C,A,G,G,C|T) = 
Prob(C)      Prob(tranversion,b1)     Prob(tranversion,b2)    Prob(tranversion,b3)
Prob(tranversion,b4)     Prob(tranversion,b5)
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b1

b2 b3

b4

b5G

C

Calculating a 
Trees ML Score

• n-1 nodes on tree with n species, each with one of 4 
states

• 4n-1 terms
• For n=10 there are 262,144
• For n=20 there are 274,877,906,944
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D. Swofford

L = Prob(D|T) =       Prob(D(j)|T) 

€ 

j=1

m

∏

• Likelihood of tree equals product of likelihoods or that 
tree at each individual position.

Calculating a 
Trees ML Score



Problems with 
Likelihood

• Take a very long time.

• The “Farris Zone”
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In the Farris Zone



In the Farris Zone
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Likelihood Analysis in PAUP
85



Likelihood Analysis 
86



Tree Support
87

Tree without support = crap



Tree Support 88

100/22
1.00



Measures of Tree Support
• Heuristic Measures of Support

– Majority rule consensus trees
– Posterior Probability (Bayesian only)
– The Bootstrap
– Decay Index

• Hypothesis Testing
– Paired-sites tests (e.g., Templeton 

Test, KH Test)
– Parametric bootstrap
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Bayesian Posterior 
Probability

90

Trees in the Posterior 
Distribution



Consensus Trees
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Figure 2.26 from Page and Holmes 1999



Majority Rule 
Consensus
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Bayesian Posterior 
Probabilties

93

Trees in the Posterior 
Distribution



Posterior Probabilities



Posterior Probabilities



Posterior Probabilities



Bootstrapping
• Sampling with replacement
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Bootstrapping a 
Phylogenetic Dataset

98

1. Generate bootstrapped datasets from original 
phylogenetic dataset. 
2. Conduct phylogenetic analyses on each of 
bootstrapped dataset.

3. Ask which nodes are shared among analyses of 
bootstrapped datasets and construct consensus.

http://www.genetics.wayne.edu/lgross/Fig4.gif

http://www.genetics.wayne.edu/lgross/Fig4.gif
http://www.genetics.wayne.edu/lgross/Fig4.gif


Interpreting 
Bootstrap Values

99

• Value on each node = percent of 
bootstrapped datasets that support that 
node.

• What is a “significant” bootstrap?
– Most studies indicate that bootstrap values 

are conservative.
– Depending on who you talk to, values 

ranging from 70-100% are considered 
reliable (Hillis and Bull 1993)
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Cummings et al. 2003

Bayesian Posterior Probabilities 
Versus Bootstraps



Bayesian Posterior Probabilities 
Versus Bootstraps
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Erixon et al. 2003



Multiple Measures
102

100/22
1.00



The Decay Index

• Also referred to as ‘Bremer support.’

• How much longer would a tree have to 
be to not include a particular node?
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Calculating Decay Indices
1. Generate tree whose only structure 

consists of the node of interest.



Method for Calculating Decay 
Indices

2. Use constraint function in PAUP to obtain the 
best tree lacking that node.

2. Obtain the best tree lacking a particular 
node.



1. Generate tree whose only structure 
consists of a particular node of interest.

2. Use constraint function in PAUP to obtain 
the best tree lacking a particular node.

3. Calculate decay index

• Decay index = score for most 
parsimonious tree without constraint 
minus score for most parsimonious tree 
lacking the node of interest.

Calculating Decay Indices



Automation of Decay Index 
Calculation in MacClade

• Often calculated for every node on a tree.
• Use of MacClade to automate generation of 

constraint trees.



Well-supported Tree
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