Reconstructing

Phylogenetic Trees:
Distances, Parsimony,

> and Likelihood

September 25th 1, 2008

Parsimony

I. Counting evolutionary changes.
II. Searching for the most parsimonious tree.

- Exploring tree space.
- Sequence of taxon addition.
III.Performance of parsimony.
IV.Problems with parismony.

UNTMESITY ROCHESTER

I. Counting the Number of Changes

- The Fitch/Wagner method.
- The Dollo method.

Fitch/Wagner Method ${ }^{4}$

- Postorder tree transversal.
- At internal node, create intersection of descendent sets.
- If empty, create union of descendent sets.

Fitch/Wagner Method ${ }^{8}$

 Total Number of Changes $=3$

I. Counting the Number of Changes

- The Fitch/Wagner method.
- General model for reversible change.
- The Dollo method.
- Model for characters that are considered more likely to evolve in one direction.

(10) UNIVERSITYof ROCHESTER

Dollo Method

Eyeless Eye

Difficult

UNIVERSITYof ROCHESTER

Dollo Method

Total Number of Changes $=2$

Dollo Method

Total Number of Changes $=2$

UNU UNIVERSITYof ROCHESTER

Dollo Method

 Total Number of Changes $=3$E
0

D
 1

0

B
A
1

\{13 \{1]

$$
\{0\}\{1\}
$$

Dollo Method

 Total Number of Changes $=8$

Dollo Method

 Total Number of Changes $=2$

UNTMESITY ROCHESTER

I. Counting the
 Number of Changes

- The Fitch/Wagner method.
- General model for reversible change.
- The Dollo method.
- Model for characters that are considered more likely to evolve in one direction.

Optimality Criterion

UNIVERSITYof ROCHESTER

How Many Trees?

Taxa	Unrooted Trees	Rooted Trees
4	3	15
8	10,395	135,135
10	$2,027,025$	$34,459,425$
22	$3 \times 10^{\wedge} 23$	
50	$3 \times 10^{\wedge} 74^{*}$	

* More trees than there are atoms in the universe.

II. Searching For the

Optimal Topology

l.Exhaustive

- Examines all possible trees.
- Only works for small number of taxa (<12).
2.Branch \& Bound
- Ignores trees that are sure to be worse.
- Again, only works for small numbers (<18).
3.Heuristic
- Uses algorithms to explore tree space.
- Only method that works for large datasets.

1．Exhaustive Search

四罗要 UNIVERSITY of ROCHESTER

1. Exhaustive Search

19
 1．Exhaustive Search
 Grab File Edit Capture Window Help

四罗要 UNIVERSITY of ROCHESTER

Figure 5.3: Search tree for most parsimonious tree in a five-species case.

U(1) UNIVERSITYof ROCHESTER

Figure 5.4: Search tree for most parsimonious tree for five species, using the data of Table 1.1. Trees are shown in Figure 5.3. Dashed lines are those not traversed by a branch and bound method. The species names in the data set correspond to labels A through E in Figure 5.3.

U(10) UNIVERSITY of ROCHESTER

2．Branch \＆Bound

2．Branch \＆Bound

四罗罗 UNIVERSITY of ROCHESTER

2．Branch \＆Bound

四罗罗 UNIVERSITY of ROCHESTER

3. Heuristic Search

The greedy search algorithm

Higher Peak Missed by Greedy Analysis

Figure 4.1: A surface rising above a two-dimensional plain (or plane). The process of climbing uphill on the surface is illustrated, as well as the failure to find a higher peak by this "greedy" method.

U(1) UNIVERSITYof ROCHESTER

3. Heuristic Search

1.Rearranging the topology

- Nearest neighbor interchange (NNI).
- Subtree pruning and regrafting (SPR).
- Tree bisection and reconnection (TBR).
2.Sequence of taxon addition
- Multiple sequence addition replicates required to avoid non-optimal peaks.

3. Heuristic Search

- Nearest Neighbor Interchange (NNI)
- Dissolve an internal branch and reform in the two other possible ways.

is rearranged by dissolving the connections to an interior branch

and reforming them in one of the two possible alternative ways:

Figure 4.2: The process of nearest-neighbor interchange. An interior branch is dissolved and the four subtrees connected to it are isolated. These then can be reconnected in two other ways.

3. Heuristic Search

- Nearest Neighbor Interchange (NNI)
- Dissolve an internal branch and reform in the two other possible ways.

Figure 26 Branch swapping by nearest-neighbor interchanges (NNIs). Each interior branch of the tree defines a local region of four subtrees connected by the interior branch. Interchanging a subtree on one side of the branch with one from the other constitutes an NNI. Two such rearrangements are possible for each interior branch.

3．Heuristic Search

－Subtree Pruning and Regrafting（SPR）
－Remove some chunk of the tree and try placing it in every possible position on the remainder of the original tree．

Add it in，attaching it to one（ ${ }^{*}$ ） of the other branches

Here is the result：

3. Heuristic Search

- Tree Bisection and Reconnection (TBR).
- More elaborate form of SPR in which the two possible subtrees are merged in every possible way.

Connect a branch of one to a branch of the other

Figure 4.6: Tree bisection and reconnection (TBR). A branch is broken and the two tree fragments are reconnected by putting in branches between all possible branches in one and all possible branches in the other. One of these reconnections and its result are shown here.

3. Heuristic Search

四思 UNIVERSITY of ROCHESTER

3. Heuristic Search

- Taxon addition sequence.
- Manner in which taxa are added to the analysis can influence the results of a heuristic analysis.

Figure 4.8: Sequential addition carried out on the data in Table 1.1 The species names A-E correspond, respectively, to the names Alpha through Epsilon in Table 1.1. Sequential addition ends up with four trees tied for best. None of these is actually the most parsimonious tree.

3．Heuristic Search

－Taxon addition sequence．
－Manner in which taxa are added to the analysis can influence the results of a heuristic analysis．
－Always run multiple sequence addition replicates．

Figure 4．8：Sequential addition carried out on the data in Table 1．1 The species names A－E correspond，respectively，to the names Alpha through Epsilon in Table 1．1．Sequential addition ends up with four trees tied for best．None of these is actually the most parsimonious tree．

Parsimony

III. Performance of

Parsimony

四包 UNIVERSITYof ROCHESTER

IV. Problems with Parsimony

- Substitutional saturation.
- Long-branch attraction \& the dreaded "Felsenstein Zone"

In the Felsenstein Zone

Pattern type

(90) UNIVERSITY of ROCHESTER

In the Felsenstein Zone

IV．Problems with

四罗罗 UNIVERSITYof ROCHESTER

Models of DNA Evolution

- DNA distances.
- Using models of evolution to 'correct' DNA distance estimates.

Uncorrected 'p'

 $p=n_{d} / n$$\mathrm{p}=$ proportion of nucleotides that differ between two sequences.
nd $=$ number of differences.
$\mathrm{n}=$ total sequence length.

UNU UNIVERSITYof ROCHESTER

Saturation Curve

(1) UNIVERSITYof ROCHESTER

Types of Changes

(d) Parallel substitution

2 changes, no difference

(b) Multiple substitution

(e) Convergent substitution

3 changes, no difference

(c) Coincidental substitution

2 changes, 1 difference

(f) Back substitution

2 changes, no difference

Correction of Distances

[^0]
Models of DNA Evolution

1．Different types of substitutions （transitions，transversions，etc．）．

2．Different nucleotide frequencies．
3．Rate variation among sites．
4．Proportion of sites lacking polymorphism．

Models of DNA Evolution

Models of DNA Evolution

四罗罗 UNIVERSITYof ROCHESTER

$$
\begin{aligned}
& \text { Jukes-Cantor } \\
& \mathbf{P}_{t}=\left[\begin{array}{cccc}
. & \alpha & \alpha & \alpha \\
\alpha & . & \alpha & \alpha \\
\alpha & \alpha & . & \alpha \\
\alpha & \alpha & \alpha & .
\end{array}\right] \quad \mathrm{f}=\left[\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}\right]
\end{aligned}
$$

1. All types of substitutions equally likely.
2. All nucleotides present at the same frequency.
3. No rate variation among sites.
4. All sites potentially variable.

Transition Bias

Type of sequences

mtDNA

12 S rRNA
α - and β-globins
Pseudo η-globin

Transition/transversion ratio (κ)
9.0
1.75
0.66
2.70

Transition Bias

四包 UNIVERSITYof ROCHESTER

Models of DNA Evolution

Kimura Two

Parameter

$$
\boldsymbol{P}_{t}=\left[\begin{array}{cccc}
\mathbf{A} & \mathbf{C} & \mathbf{G} & \mathbf{T} \\
\cdot & \beta & \alpha & \beta \\
\beta & \cdot & \beta & \alpha \\
\alpha & \beta & . & \beta \\
\beta & \alpha & \beta & \cdot
\end{array}\right], \quad \mathbf{f}=\left[\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}\right]
$$

1. Transitions \& transversions assigned different rates.
2. All nucleotides present at the same frequency.
3. No rate variation among sites.
4. All sites potentially variable.

UNIVERSITYof ROCHESTER

GTR or REV

U(1) UNIVERSITYof ROCHESTER

GTR or REV

1. Each type of reversible substitution with its own rate.
2. Nucleotides frequencies vary.
3. No rate variation among sites.
4. All sites potentially variable.

UNIVERSITYof ROCHESTER

Rate Parameters for ML

$$
\begin{aligned}
& \mathbf{Q}=\left(\begin{array}{llll}
- & \alpha & \alpha & \alpha \\
\alpha & - & \alpha & \alpha \\
\alpha & \alpha & - & \alpha \\
\alpha & \alpha & \alpha & -
\end{array}\right) \\
& \text { Jukes-Cantor (1969) }
\end{aligned}
$$

$$
\mathbf{Q}=\left(\begin{array}{cccc}
- & \beta & \alpha & \beta \\
\beta & - & \beta & \alpha \\
\alpha & \beta & - & \beta \\
\beta & \alpha & \beta & -
\end{array}\right)
$$

Kimura（1980）＂2－parameter＂

$$
\mathbf{Q}=\left(\begin{array}{llll}
\pi_{\mathrm{A}} r_{\mathrm{AA}} & \pi_{\mathrm{C}} r_{\mathrm{AC}} & \pi_{\mathrm{G}} r_{\mathrm{AG}} & \pi_{\mathrm{T}} r_{\mathrm{AT}} \\
\pi_{\mathrm{A}} r_{\mathrm{CA}} & \pi_{\mathrm{C}} r_{\mathrm{CC}} & \pi_{\mathrm{G}} r_{\mathrm{CG}} & \pi_{\mathrm{T}} r_{\mathrm{CT}} \\
\pi_{\mathrm{A}} r_{\mathrm{GA}} & \pi_{\mathrm{C}} r_{\mathrm{GC}} & \pi_{\mathrm{G}} r_{\mathrm{GG}} & \pi_{\mathrm{T}} r_{\mathrm{GT}} \\
\pi_{\mathrm{A}} r_{\mathrm{TA}} & \pi_{\mathrm{C}_{\mathrm{TC}}} & \pi_{\mathrm{G}} r_{\mathrm{TG}} & \pi_{\mathrm{T}} r_{\mathrm{TT}}
\end{array}\right)
$$

Hasegawa－Kishino－Yano（1985）

Rate Variation Among Sites

- Gamma
- Shape parameter as the inverse of the squared coefficient of variation.
- Small coefficient of variation results in rates normally distributed around 1 .
- Large coefficient results in many sites with a rate close to 0 and a few with very fast rates.

Rate Variation Among Sites

Type of sequences	α
Nuclear genes	
Albumin genes	1.05
Insulin genes	0.40
c-myc genes	0.47
Prolactin genes	1.37
16S-like rRNAs, stem region	0.29
16S-like rRNAs, loop region	0.58
廿7-globin pseudogenes	0.66
Viral genes	
Hepatitis B virus genomes	0.26
Mitochondrial genes	0.16
12S rRNAs	0.18
Position I of four genes	0.08
Position 2 of four genes	1.58
Position 3 of four genes	0.17
D-loop region	0.44
Cytochrome b	

U(1) UNIVERSITYof ROCHESTER

Selecting a Model

Selecting a Model

- Use of Likelihood ratio test to identify most appropriate model.

Importance of Model Selection

UN UNIVERSITYof ROCHESTER

Synonymous v. Nonsynonymous

Second letter

[^1]
Corrected v．Uncorrected Distances

[^2]
Corrected v. Uncorrected Distances

Saturation

UNIVESITY ROCHESTER

Why Use Models?

U(1) UNIVERSITYof ROCHESTER

Why Use Models?

(b)

(1) UNIVERSITYof ROCHESTER

Maximum Likelihood

－Invented by R．A．Fisher．
－Good properties：
－Consistency（converges on correct parameters）．
－Efficiency（smallest possible variance around true parameter value）．

[^3]
Maximum Likelihood

- Typical thinking
- Prob(Hypothesis|Data)
- Prob(Tree|Data,Model)
- Maximum Likelihood thinking
- Prob(Data|Hypothesis)
- Prob(observed sequences|tree, model of evolution) = Likelihood(tree, model of evolution)

Likelihood Estimation

- What is the probability of obtaining a heads (p) with the toss of an unknown coin?
- Data: HHTTHTHHTTT

Likelihood
 Estimation

- What is the probability of obtaining a heads (p) with the toss of an unknown coin?
- Data: HHTTHTHHTTT
- $L=\operatorname{Prob}(D \mid p)=p p(l-p)(l-p) p(l-p) p p(l-p)$ $(1-p)(1-p)=p^{5}(1-p)^{6}$

Calculating Maximum Likelihood Values

HHTTHTHHTTT

$$
L=p^{5}(1-p)^{6}
$$

$$
\text { If } p=0.2, L=8.4 \mathrm{E}-5
$$

$$
\text { If } p=0.8, \mathrm{~L}=2.1 \mathrm{E}-5
$$

$$
\text { If } \mathrm{p}=0.5, \mathrm{~L}=4.9 \mathrm{E}-4
$$

$$
5 / 11=0.454545
$$

UNIVESITY ROCHESTER

Calculating Maximum Likelihood Values

НННТННННННТ

$$
\mathrm{L}=\mathrm{p}^{9}(1-\mathrm{p})^{2}
$$

$$
\text { If } p=0.2, L=3.3 \mathrm{E}-7
$$

$$
\text { If } p=0.8, \mathrm{~L}=0.005
$$

$$
\text { If } p=0.5, \mathrm{~L}=4.9 \mathrm{E}-4
$$

$$
9 / 11=0.818181
$$

UNIVESITY ROCHESTER

$$
\begin{aligned}
& \text { Calculating a } \\
& \text { Trees ML Score }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) C...AGACA...C...CTCTA...C } \\
& \text { (3) C...GGATA...A...GTTAA...C } \\
& \text { (4) C...GGATA...G...CCTAG...C }
\end{aligned}
$$

$$
\mathrm{L}=\operatorname{Prob}(\mathrm{D} \mid \mathrm{T})=\prod_{j=1}^{m} \operatorname{Prob}\left(\mathrm{D}^{(\mathrm{j})} \mid \mathrm{T}\right)
$$

- Likelihood of tree equals product of likelihoods or that tree at each individual position.

$$
\begin{aligned}
& \text { Calculating a } \\
& \text { Trees ML Score } \\
& \text { (1) }{ }^{1} \stackrel{j}{\text { C...GGACA...C...GTTTA.... }} \stackrel{N}{ } \\
& \text { (2) C...AGACA...C...CTCTA...C } \\
& \text { (3) C...GGATA...A...GTTAA...C } \\
& \text { (4) C...GGATA...G...CCTAG...C } \\
& \mathrm{L}=\operatorname{Prob}(\mathrm{D} \mid \mathrm{T})=\prod_{j=1}^{m} \operatorname{Prob}\left(\mathrm{D}^{(\mathrm{j})} \mid \mathrm{T}\right)
\end{aligned}
$$

- Likelihood of tree equals product of likelihoods or that tree at each individual position.

Calculating a Trees ML Score

Likelihood at site $j=$

Likelihood $=\operatorname{Prob}(\mathbf{C}, \mathrm{C}, \mathrm{A}, \mathrm{G}, X, Y \mid \mathrm{T})=$
$\operatorname{Prob}(Y) \quad \operatorname{Prob}\left(X \mid Y, \mathrm{~b}_{1}\right) \quad \operatorname{Prob}\left(\mathrm{C} \mid X, \mathrm{~b}_{2}\right) \quad \operatorname{Prob}\left(\mathrm{C} \mid X, \mathrm{~b}_{3}\right)$
$\operatorname{Prob}\left(\mathrm{A} \mid Y, \mathrm{~b}_{4}\right) \quad \operatorname{Prob}\left(\mathrm{G} \mid Y, \mathrm{~b}_{5}\right)$

Calculating a Trees ML Score

Likelihood at site $j=$

$\operatorname{Prob}(C, C, A, G, G, C \mid T)=$
$\operatorname{Prob}(C) \quad \operatorname{Prob}\left(G \mid C, \mathrm{~b}_{1}\right) \quad \operatorname{Prob}\left(\mathrm{C} \mid G, \mathrm{~b}_{2}\right) \quad \operatorname{Prob}\left(\mathrm{C} \mid G, \mathrm{~b}_{3}\right)$
$\operatorname{Prob}\left(\mathrm{A} \mid C, \mathrm{~b}_{4}\right) \quad \operatorname{Prob}\left(\mathrm{G} \mid C, \mathrm{~b}_{5}\right)$

Calculating a Trees ML Score

$\operatorname{Prob}(\mathbf{C}, \mathrm{C}, \mathrm{A}, \mathrm{G}, \mathrm{G}, \mathrm{C} \mid \mathrm{T})=$ $\operatorname{Prob}(C) \quad \operatorname{Prob}\left(G \mid C, b_{1}\right) \quad \operatorname{Prob}\left(C \mid G, b_{2}\right) \quad \operatorname{Prob}\left(C \mid G, b_{3}\right)$ $\operatorname{Prob}\left(\mathrm{A} \mid C, \mathrm{~b}_{4}\right) \quad \operatorname{Prob}\left(\mathrm{G} \mid C, \mathrm{~b}_{5}\right)$

Probabilities under Kimura 2 Parameter Model

1. Prob(transition|b) $=$

$$
\frac{1}{4}-\frac{1}{2} \exp \left(-\frac{2 R-1}{R+1} b\right)+\frac{1}{4} \exp \left(-\frac{2}{R+1} b\right)
$$

2. $\operatorname{Prob}($ transversion $\mid \mathrm{b})=$

$$
\frac{1}{2}-\frac{1}{2} \exp \left(-\frac{2}{R+1} b\right)
$$
 \section*{\title{

Calculating a
 \section*{\title{
Calculating a Trees ML Score
}} Trees ML Score
}}

Likelihood at site $j=$

$\operatorname{Prob}(C, C, A, G, G, C \mid T)=$
Prob(C) Prob(tranversion, b_{1}) Prob(tranversion, b_{2}) Prob(tranversion, b_{3}) Prob(tranversion, b_{4}) Prob(tranversion, b_{5})
D. Swofford

Calculating a Trees ML Score

Likelihood at site $j=$

$\operatorname{Prob}(C, C, A, G, G, C \mid T)=$
$\operatorname{Prob}(\mathrm{C}) \quad$ Prob(tranversion, $\left.\mathrm{b}_{1}\right) \quad$ Prob(tranversion, b_{2}) \quad Prob(tranversion, b_{3}) Prob(tranversion, b_{4}) Prob(tranversion, b_{5})

四包 UNIVERSITYof ROCHESTER

Calculating a Trees ML Score

Likelihood at site $j=$

- n-l nodes on tree with n species, each with one of 4 states
- $4^{\mathrm{n}-1}$ terms
- For $\mathrm{n}=10$ there are 262,144
- For n=20 there are $274,877,906,944$

U(10) UNIVERSITYof ROCHESTER

$$
\begin{aligned}
& \text { Calculating a } \\
& \text { Trees ML Score } \\
& \text { (1) C...GGACA...C...GTTTA...C } \\
& \text { (2) C...AGACA...C...CTCTA...C } \\
& \text { (3) C...GGATA...A...GTTAA...C } \\
& \text { (4) C...GGATA...G...CCTAG...C }
\end{aligned}
$$

$$
\mathrm{L}=\operatorname{Prob}(\mathrm{D} \mid \mathrm{T})=\prod_{j=1}^{m} \operatorname{Prob}\left(\mathrm{D}^{(\mathrm{j})} \mid \mathrm{T}\right)
$$

－Likelihood of tree equals product of likelihoods or that tree at each individual position．

Problems with Likelihood

- Take a very long time.

(Siddall, 1998)
- The "Farris Zone"

U(1) UNIVERSITYof ROCHESTER

In the Farris Zone

True synapomorphy

Apparent synapomorphies actually due to misinterpreted homoplasy

In the Farris Zone

Likelihood Analysis in PAUP

Likelihood Analysis

Tree Support

Tree without support = crap

UN UNIVERSITY of ROCHESTER

Tree Support

UN UNIVERSITYof ROCHESTER

Measures of Tree Support

- Heuristic Measures of Support
- Majority rule consensus trees
- Posterior Probability (Bayesian only)
- The Bootstrap
- Decay Index
- Hypothesis Testing
- Paired-sites tests (e.g., Templeton Test, KH Test)
- Parametric bootstrap

Bayesian Posterior Probability

Generation
四罗要 UNIVERSITY of ROCHESTER

Consensus Trees

Tree 1
C

Tree 2

Consensus

Figure 2.26 from Page and Holmes 1999

U(1) UNIVERSITYof ROCHESTER

Majority Rule

 Consensus$\begin{array}{lll}\text { Tree } 1 & \text { Tree } 2 & \text { Tree } 3\end{array}$

Bayesian Posterior Probabilties

Generation

UN UNIVERSITYof ROCHESTER

Posterior Probabilities

Evolutionary process: JC69 100 Sites

Posterior Probabilities

Evolutionary process: GTR $+\Gamma$ 100 Sites

Bootstrapping

 - Sampling with replacement

四包 UNIVERSITYof ROCHESTER

Bootstrapping a Phylogenetic Dataset

3. Ask which nodes are shared among analyses of bootstrapped datasets and construct consensus.

Interpreting

- Value on each node = percent of bootstrapped datasets that support that node.
- What is a 'significant"' bootstrap?
- Most studies indicate that bootstrap values are conservative.
- Depending on who you talk to, values ranging from $70-100 \%$ are considered reliable (Hillis and Bull 1993)

Bayesian Posterior Probabilities Versus Bootstraps

Bayesian Posterior Probabilities Versus Bootstraps

(10) UNIVERSITYof ROCHESTER

Multiple Measures

UNU UNIVERSITYof ROCHESTER

The Decay Index

- Also referred to as 'Bremer support.'
- How much longer would a tree have to be to not include a particular node?

UNIVERSITYof ROCHESTER

Calculating Decay Indices

1. Generate tree whose only structure consists of the node of interest.

출
UNIVERSITY of ROCHESTER

Method for Calculating Decay Indices

2. Obtain the best tree lacking a particular

 node.

UNIVERSITYof ROCHESTER

Calculating Decay Indices

1．Generate tree whose only structure consists of a particular node of interest．

2．Use constraint function in PAUP to obtain the best tree lacking a particular node．

3．Calculate decay index
－Decay index＝score for most parsimonious tree without constraint minus score for most parsimonious tree lacking the node of interest．

Automation of Decay Index Calculation in MacClade

－Often calculated for every node on a tree．
－Use of MacClade to automate generation of constraint trees．

四罗要 UNIVERSITY of ROCHESTER

Well-supported Tree

[^0]: 四包 UNIVERSITY of ROCHESTER

[^1]: U(1) UNIVERSITYof ROCHESTER

[^2]: 四罗匋 UNIVERSITYof ROCHESTER

[^3]: 四罗罗 UNIVERSITY of ROCHESTER

